Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301674, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38284329

RESUMO

Double-atom site catalysts (DASs) have emerged as a recent trend in the oxygen reduction reaction (ORR), thereby modifying the intermediate adsorption energies and increasing the activity. However, the lack of an efficient dual atom site to improve activity and durability has limited these catalysts from widespread application. Herein, the nitrogen-coordinated iron and tin-based DASs (Fe-Sn-N/C) catalyst are synthesized for ORR. This catalyst has a high activity with ORR half-wave potentials (E1/2 ) of 0.92 V in alkaline, which is higher than those of the state-of-the-art Pt/C (E1/2  = 0.83 V), Fe-N/C (E1/2  = 0.83 V), and Sn-N/C (E1/2  = 0.77 V). Scanning electron transmission microscopy analysis confirmed the atomically distributed Fe and Sn sites on the N-doped carbon network. X-ray absorption spectroscopy analysis revealed the charge transfer between Fe and Sn. Both experimental and theoretical results indicate that the Sn with Fe-NC (Fe-Sn-N/C) induces charge redistribution, weakening the binding strength of oxygenated intermediates and leading to improved ORR activity. This study provides the synergistic effects of DASs catalysts and addresses the impacts of P-block elements on d-block transition metals in ORR.

2.
Biomimetics (Basel) ; 8(8)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132554

RESUMO

In the realm of computational problem-solving, the search for efficient algorithms tailored for real-world engineering challenges and software requirement prioritization is relentless. This paper introduces the Multi-Learning-Based Reptile Search Algorithm (MLBRSA), a novel approach that synergistically integrates Q-learning, competitive learning, and adaptive learning techniques. The essence of multi-learning lies in harnessing the strengths of these individual learning paradigms to foster a more robust and versatile search mechanism. Q-learning brings the advantage of reinforcement learning, enabling the algorithm to make informed decisions based on past experiences. On the other hand, competitive learning introduces an element of competition, ensuring that the best solutions are continually evolving and adapting. Lastly, adaptive learning ensures the algorithm remains flexible, adjusting the traditional Reptile Search Algorithm (RSA) parameters. The application of the MLBRSA to numerical benchmarks and a few real-world engineering problems demonstrates its ability to find optimal solutions in complex problem spaces. Furthermore, when applied to the complicated task of software requirement prioritization, MLBRSA showcases its capability to rank requirements effectively, ensuring that critical software functionalities are addressed promptly. Based on the results obtained, the MLBRSA stands as evidence of the potential of multi-learning, offering a promising solution to engineering and software-centric challenges. Its adaptability, competitiveness, and experience-driven approach make it a valuable tool for researchers and practitioners.

3.
Small Methods ; 7(10): e2300234, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37401196

RESUMO

Electrochemical reduction of oxygen into hydrogen peroxide in an acidic medium offers an energy-efficient and green H2 O2 synthesis as an alternative to the energy-intensive anthraquinone process. Unfortunately, high overpotential, low production rates, and fierce competition from traditional four-electron reduction limit it. In this study, a metalloenzyme-like active structure is mimicked in carbon-based single-atom electrocatalysts for oxygen reduction to H2 O2 . Using a carbonization strategy, the primary electronic structure of the metal center with nitrogen and oxygen coordination is modulated, followed by epoxy oxygen functionalities close to the metal active sites. In an acidic medium, CoNOC active structures proceed with greater than 98% H2 O2 selectivity (2e- /2H+ ) rather than CoNC active sites that are selective to H2 O (4e- /4H+ ). Among all MNOC (M = Fe, Co, Mn, and Ni) single-atom electrocatalysts, the CoNOC is the most selective (> 98%) for H2 O2 production, with a mass activity of 10 A g-1 at 0.60 V vs. RHE. X-ray absorption spectroscopy is used to identify the formation of unsymmetrical MNOC active structures. Experimental results are also compared to density functional theory calculations, which revealed that the structure-activity relationship of the epoxy-surrounded CoNOC active structure reaches optimum (ΔG*OOH ) binding energies for high selectivity.

4.
J Mol Cell Biol ; 14(8)2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190325

RESUMO

Stable transmission of genetic information during cell division requires faithful mitotic spindle assembly and chromosome segregation. In eukaryotic cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Although a list of mitotic kinases has been implicated in NEBD, how they coordinate their activity to dissolve the nuclear envelope and protein machinery such as nuclear pore complexes was unclear. Here, we identified a regulatory mechanism in which Nup62 is acetylated by TIP60 in human cell division. Nup62 is a novel substrate of TIP60, and the acetylation of Lys432 by TIP60 dissolves nucleoporin Nup62-Nup58-Nup54 complex during entry into mitosis. Importantly, this acetylation-elicited remodeling of nucleoporin complex promotes the distribution of Nup62 to the mitotic spindle, which is indispensable for orchestrating correct spindle orientation. Moreover, suppression of Nup62 perturbs accurate chromosome segregation during mitosis. These results establish a previously uncharacterized regulatory mechanism in which TIP60-elicited nucleoporin dynamics promotes chromosome segregation in mitosis.


Assuntos
Segregação de Cromossomos , Lisina Acetiltransferase 5 , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Acetilação , Mitose , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Lisina Acetiltransferase 5/metabolismo
6.
Shock ; 57(2): 309-315, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34907119

RESUMO

ABSTRACT: ERG (ETS-related gene) is a member of the ETS (Erythroblast-transformation specific) family of transcription factors abundantly present in vascular endothelial cells. Recent studies demonstrate that ERG has important roles in blood vessel stability and angiogenesis. However, it is unclear how ERG is potentially involved in microvascular barrier functions and permeability. A wide variety of diseases and clinical conditions including trauma-hemorrhagic shock and burn injury are associated with microvascular dysfunctions, which causes excessive microvascular permeability, tissue edema and eventually, multiple organ dysfunction and death. The main purpose of this study was to determine the specific role of ERG in regulating microvascular permeability in human lung microvascular endothelial cells (HLMEC) and to evaluate if exogenous ERG will protect the barrier. The HLMECs were grown on Transwell inserts as monolayers and were transfected with ERG CRISPR/cas9 knockdown plasmid, ERG CRISPR activation plasmid, recombinant ERG protein or their respective controls. Recombinant vascular endothelial growth factor (VEGF) was used as an inducer of permeability for evaluating the effect of ERG activation on permeability. Changes in barrier integrity and permeability were studied using monolayer permeability assay and immunofluorescence of adherens junction proteins (VE-cadherin and ß-catenin) respectively. CRISPR/cas9-based ERG knockdown as well as VEGF treatment induced monolayer hyperpermeability, VE-cadherin, and ß-catenin junctional relocation and cytoskeletal F-actin stress fiber formation. CRISPR based ERG activation and recombinant ERG transfection attenuated VEGF-induced monolayer hyperpermeability. ERG activation preserved the adherens junctions and cytoskeleton. These results demonstrate that ERG is a potent regulator of barrier integrity and permeability in human lung microvascular endothelial cells and endogenously or exogenously enhancing ERG provides protection against barrier dysfunction and hyperpermeability.


Assuntos
Junções Aderentes/genética , Permeabilidade Capilar/genética , Células Endoteliais , Endotélio Vascular/citologia , Microvasos , Ativação Transcricional , Células Cultivadas , Humanos , Regulador Transcricional ERG/genética
7.
Small ; 17(46): e2103823, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34665522

RESUMO

A heterobimetallic corrole complex, comprising oxygen reduction reaction (ORR) active non-precious metals Co and Fe with a corrole-N4 center (PhFCC), is successfully synthesized and used to prepare a dual-atom molecular catalyst (DAMC) through subsequent low-temperature pyrolysis. This low-temperature pyrolyzed electrocatalyst exhibited impressive ORR performance, with onset potentials of 0.86 and 0.94 V, and half-wave potentials of 0.75 and 0.85 V, under acidic and basic conditions, respectively. During potential cycling, this DAMC displayed half-wave potential losses of only 25 and 5 mV under acidic and alkaline conditions after 3000 cycles, respectively, demonstrating its excellent stability. Single-cell Nafion-based proton exchange membrane fuel cell performance using this DAMC as the cathode catalyst showed a maximum power density of 225 mW cm-2 , almost close to that of most metal-N4 macrocycle-based catalysts. The present study showed that preservation of the defined CoN4 structure along with the cocatalytic Fe-Cx site synergistically acted as a dual ORR active center to boost overall ORR performance. The development of DAMC from a heterobimetallic CoN4-macrocyclic system using low-temperature pyrolysis is also advantageous for practical applications.

8.
J Mol Cell Biol ; 12(6): 424-437, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31638145

RESUMO

Ezrin, a membrane-cytoskeleton linker protein, plays an essential role in cell polarity establishment, cell migration, and division. Recent studies show that ezrin phosphorylation regulates breast cancer metastasis by promoting cancer cell survivor and promotes intrahepatic metastasis via cell migration. However, it was less characterized whether there are additional post-translational modifications and/or post-translational crosstalks on ezrin underlying context-dependent breast cancer cell migration and invasion. Here we show that ezrin is acetylated by p300/CBP-associated factor (PCAF) in breast cancer cells in response to CCL18 stimulation. Ezrin physically interacts with PCAF and is a cognate substrate of PCAF. The acetylation site of ezrin was mapped by mass spectrometric analyses, and dynamic acetylation of ezrin is essential for CCL18-induced breast cancer cell migration and invasion. Mechanistically, the acetylation reduced the lipid-binding activity of ezrin to ensure a robust and dynamic cycling between the plasma membrane and cytosol in response to CCL18 stimulation. Biochemical analyses show that ezrin acetylation prevents the phosphorylation of Thr567. Using atomic force microscopic measurements, our study revealed that acetylation of ezrin induced its unfolding into a dominant structure, which prevents ezrin phosphorylation at Thr567. Thus, these results present a previously undefined mechanism by which CCL18-elicited crosstalks between the acetylation and phosphorylation on ezrin control breast cancer cell migration and invasion. This suggests that targeting PCAF signaling could be a potential therapeutic strategy for combating hyperactive ezrin-driven cancer progression.


Assuntos
Membrana Celular/metabolismo , Movimento Celular , Quimiocinas CC/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Acetilação , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/química , Células HEK293 , Humanos , Células LLC-PK1 , Fosfatidilinositol 4,5-Difosfato , Fosforilação , Conformação Proteica , Domínios Proteicos , Transporte Proteico , Especificidade por Substrato , Suínos , Fatores de Transcrição de p300-CBP/metabolismo
9.
Langmuir ; 33(1): 2-10, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28004940

RESUMO

We report the synthesis of lightweight, free-standing Ni-Fe@rGO porous interconnects by carbothermal reduction of Ni-FeOx using graphene oxide (GO) as the reducing agent. Here, we take advantage of the oxygen functionalities present in GO to aid in anchoring the metal ions followed by epoxide-assisted Ni-FeOx@GO network formation. When pyrolyzed under inert conditions, Ni-FeOx@GO networks were converted to Ni-Fe@rGO by simple carbothermal metal reduction at 800 °C. The Ni-Fe@rGO monoliths were found to be macroporous, electrically conducting, and electrocatalytic toward oxygen evolution reaction (OER). The monoliths exhibited excellent OER activity yielding a current density of 10 mA cm-2 at an overpotential of 350 mV versus RHE, Tafel slope of 38 mV decade-1, and a TOF value of 50 s-1 on par with the established Ni-Fe based electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...